Carbon and nitrogen dynamics in bioenergy ecosystems: 2. Potential greenhouse gas emissions and global warming intensity in the conterminous United States
نویسنده
چکیده
This study estimated the potential emissions of greenhouse gases (GHG) from bioenergy ecosystems with a biogeochemical model AgTEM, assuming maize (Zea mays L.), switchgrass (Panicum virgatum L.), and Miscanthus (Miscanthus 9 giganteus) will be grown on the current maize-producing areas in the conterminous United States. We found that the maize ecosystem acts as a mild net carbon source while cellulosic ecosystems (i.e., switchgrass and Miscanthus) act as mild sinks. Nitrogen fertilizer use is an important factor affecting biomass production and N2O emissions, especially in the maize ecosystem. To maintain high biomass productivity, the maize ecosystem emits much more GHG, including CO2 and N2O, than switchgrass and Miscanthus ecosystems, when high-rate nitrogen fertilizers are applied. For maize, the global warming potential (GWP) amounts to 1–2 Mg CO2eq ha 1 yr , with a dominant contribution of over 90% from N2O emissions. Cellulosic crops contribute to the GWP of less than 0.3 Mg CO2eq ha 1 yr . Among all three bioenergy crops, Miscanthus is the most biofuel productive and the least GHG intensive at a given cropland. Regional model simulations suggested that substituting Miscanthus for maize to produce biofuel could potentially save land and reduce GHG emissions.
منابع مشابه
Estimation of the Carbon Footprint in Dairy Sheep Farm
By 2050, the earth’s population is expected to be more than 9 billion. The need for secure food and water supply will force agriculture to increase production. The major greenhouse gases (GHGs) from the livestock sector are carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) throughout the production process. These gases are the key contributor to an in...
متن کاملBioenergy crop productivity and potential climate change mitigation from marginal lands in the United States: An ecosystem modeling perspective
Growing biomass feedstocks from marginal lands is becoming an increasingly attractive choice for producing biofuel as an alternative energy to fossil fuels. Here, we used a biogeochemical model at ecosystem scale to estimate crop productivity and greenhouse gas (GHG) emissions from bioenergy crops grown on marginal lands in the United States. Two broadly tested cellulosic crops, switchgrass, an...
متن کاملIndirect emissions from biofuels: how important?
A global biofuels program will lead to intense pressures on land supply and can increase greenhouse gas emissions from land-use changes. Using linked economic and terrestrial biogeochemistry models, we examined direct and indirect effects of possible land-use changes from an expanded global cellulosic bioenergy program on greenhouse gas emissions over the 21st century. Our model predicts that i...
متن کاملEconomic and Environmental Factors Determining the Amount of Carbon Dioxide Emissions in the MENA Countries
Abstract: The gradual warming of the earth and its negative environmental and economic impacts contributed to pay attention to sustainable development considerably. Since climate change is a major cause of greenhouse gas emissions, including CO2, countries are seeking to prevent the rapid growth of emissions to reduce global climate change. Accordingly, and considering the importance of the sub...
متن کاملHuman nitrogen fixation and greenhouse gas emissions: a global assessment
The net impact of human nitrogen (N) fixation on climate (ignoring short-lived components) mainly depends on the magnitude of the warming effect of (direct and indirect) nitrous oxide (N2O) emissions and the cooling effect of N-induced carbon dioxide (CO2) uptake. N-induced CO2 uptake is caused by anthropogenic N deposition which increases net primary production (NPP) in N-limited ecosystems an...
متن کامل